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A hybrid optimization algorithm is developed to minimize the control energy and the
structural weight under the constraints of the structural dynamic property requirements.
A 72-bar space truss with two piezoelectric actuators is used to illustrate the complete
process of this algorithm. It is shown that the control energy and the structural weight are
clearly reduced using the proposed method.
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1. INTRODUCTION

Among the modern structures of huge space vehicles and aircraft, the truss is one of the
most commonly used structures. In the design of such structures, two essential requirements
should be met. The "rst is that they must possess excellent dynamic behaviors to ensure the
safety and stability of the structures, and be able to keep the instruments and equipment
they carry in good condition. The second is that the structural weight must be as light as
possible in order to reduce the cost of launching and to increase the payload. However,
these two requirements are often contradictory.

With the development of modern aerospace techniques, structural dynamic characteristics
play an increasingly important role. For example, in order to catch a 1}10m2 target on the
ground by electronic and optical microscope or laser}radar set on the observation satellite,
the orientation and stability errors of the supporting shelf should not exceed 10~4 rad [1].
On the other hand, with the increment of structural weight, the cost of launching a space
vehicle increases rapidly. Therefore, improvement of the dynamic behavior and decrement
of the structural weight are very important for space vehicles.

Recently, in order to achieve better dynamic properties of the structure, great attention
has been paid to the adaptive control of structural vibration using intelligent structures [2].
However, in order to realize the adaptive control of structural vibration, the weight of the
structure will increase due to the additional hardware, such as piezoelectric actuators and
electronic components. Generally speaking, the structural weight will increase obviously
0022-460X/02/040775#10 $35.00/0 ( 2002 Academic Press
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along with the increase of the required control force. For example, a piezoelectric actuator
made in Japan, which can be used to control the vehicle structural vibration, weighs up
to 2 kg and its actuating force is about 1000 N [3]. Because piezoelectric elements consume
less power and can be operated easily by electric "eld, they nowadays act as actuators in
the vibration control of intelligent space vehicle structures. However, since mass density of
the piezoelectric materials is large, the additional weight to the space structure is not
negligible.

Many researchers have been studying the optimal vibration control and structural
optimization for a long time. Jin and Schmit [4] presented a method of integrating the
design space for structural/control system optimization problems in the case of linear state
feedback control, using a variety of dynamic behavior constraints, such as closed-loop
eigenvalues, peak transient displacements, and peak actuator forces. Taday and Minami [5]
studied the weight minimization problem of a 3-D truss structure with constraints on the
stresses and natural frequencies of speci"ed modes, and where the truss members were
optimized by sequential linear programming. Ou and Kikuchi [6] proposed an integrated
design procedure composed of structural design, control design, and actuator locations
design. They used an independent modal space control algorithm (IMSC) to reduce the
dynamic response and to minimize the control force, while still keeping the same modal
response for the controlled modes. Kim [7] developed a method of structure/control
simultaneous optimization for the active vibration control of bridge towers, platforms,
ocean vehicles, etc. The simultaneous design method is used to achieve optimal system
performance using linear matrix inequality (LMI).

In the present paper, a powerful hybrid optimization approach is developed. The
minimization of the control energy and the structural weight is dealt with simultaneously
under the constraints of the structural dynamic properties. Only a few papers related to this
subject have been reported so far.

2. THEORETICAL ANALYSIS OF HYBRID OPTIMIZATION

Assume that the design variables for structural weight minimization are the
cross-sectional areas s

j
of the intelligent truss structure, whose vibration can be controlled

using piezoelectric actuators, and the range of variation of the areas s
j
( j"1, 2,2, N) is

given by

s
dj
(s

j
(s

uj
, j"1, 2,2, N, (1)

where s
dj

and s
uj

are the lower and upper bounds of the cross-sectional area of each bar,
respectively, and N is the total number of bars composing the truss structure.

The equation of motion for a vibrating truss with control force can be modelled using
"nite element method as

MqK#Dq5 #Kq"B
0
u,

y"C
0
q5 ,

q5 (0)"q5
0
, q(0)"q

0
,

(2)

where M, K and D are the mass matrix, the sti!ness matrix and the damping matrix of the
system, respectively; u is the vector of control force produced by the actuator made of
piezoelectric bars; B

0
is the con"guration matrix of the input control force; C

0
is the

measuring matrix of node velocity; q is the vector of node displacement and the overdot
represents the derivation with respect to time.
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Here, only the excitation with non-zero initial conditions is considered, because the
excitation on the space vehicle structure is mainly the transient pulse, and the behaviors of
the responses caused by the transient pulse is similar to those caused by the excitation with
non-zero initial conditions.

Suppose that the system possesses proportional damping, i.e.,

D"aM#bK,

where a and b are proportional damping coe$cients. The matrices M, K and D are
functions of the design variables s

j
, i.e.,

M"M(s
j
), D"D(s

j
), K"K(s

j
).

The con"guration matrix B
0
and measuring matrix C

0
are only related to the locations of

the piezoelectric actuators and sensors, respectively, and are irrelevant to s
j
.

In equation (2), let

x"G
q

q5 H.
The state-space equations of the structure to be controlled can then be written as

x5 "C
0

!M~1K

I

!M~1DD x#C
0

M~1B
0
D u ,

y"[0 C
0
]x, x

0
"G

q
0

q5
0
H. (3)

Introducing the state feedback gives

u"Gx, (3@)

and equation (3) can be rewritten as

x5 "GC
0

!M~1K

I

!M~1DD#C
0

M~1B
0
DGHx ,

y"[0 C
0
]x, x

0
"G

q
0

q5
0
H. (4)

When the structure is imposed by the ith initial condition x
0i

(i"1, 2,2, n), its state
response vector is denoted by x (i, t). Supposing that at time t the required input control
force vector is u (i, t), and the measured output vector is y (i, t), the constraint on structural
dynamics through the whole dynamic response process can be written as

S
n
+
i/1
P

=

0

[y
j
(i, t)]2dt)>

j
, j"1, 2,2 , n

y
, (5)

where y
j
(i, t) is the jth component of the vector y (i, t), and>

j
( j"1, 2, . . . , n

y
) is a restricted

value of vibration response at measurement point j.
In order to meet the condition expressed by equation (5), the truss structure should

possess enough sti!ness. As an initial step for structure design, this can be realized by
choosing the allowable upper bound of the cross-sectional area for each bar, i.e.,

s
j
"s

uj
, j"1, 2,2, N.
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Since the selected s
j
can make equation (5) valid, M, D and K in equation (4) can be

determined. B
0

and C
0

are given by the locations of the actuators and sensors respectively.
If the structural parameters of a controllable system are invariable, the linear quadratic

optimal control scheme can be used to obtain the optimal control input and the minimal
structural vibration response simultaneously. However, generally speaking, the obtained
structural system is not optimal, and its structural parameters can be sequentially optimized
to minimize its weight. Thus, an iterative method must be adopted.

In the initial design of a controller, the energy of the control input is regarded as the
object function

J"
n
+
i/1
P

=

0

uT(i, t)Ru(i, t) dt, (6)

subjected to the constraints of equations (4) and (5). In equation (6), R is the weighting
matrix, and it can be determined according to the ability of the actuator. In order to
minimize the objective function J, according to equation (3@), u in equation (6) is replaced by
Gx, the initial optimum matrix G of control gain can be obtained by solving equations (4)
and (6) based on the optimum control theory. On the other hand, if equation (5) is regarded
as the objective function, and equations (4) and (6) are regarded as the constraint conditions,
it is also feasible.

The structural optimization aims at decreasing the cross-sectional area of the bars in
truss within the allowable range of design variables denoted by equation (1), and still
keeping equation (5) valid. This means that when a smaller cross-sectional area for the bars
is chosen, if the dynamic response x (t) of the structure system still remains the same as
before, equation (5) will be satis"ed automatically, and as a result, the weight of the
structure will de"nitely be decreased. Therefore, the required control energy may also be
reduced. Consequently, this provides the possibility for further optimization.

Assume that the variation of the cross-sectional area of each bar is sJ
j
( j"1, 2,2, N);

then the new cross-sectional area of each bar is

s
j
"s

uj
#sJ

j
, j"1, 2,2 , N.

If the variation of the structural parameters matrices caused by sJ
j
"1 can be written as

M
j
, D

j
and K

j
, the structural parameter matrices of the new system will become

M3 (s
j
)"M (s

uj
)#

N
+
j/1

sJ
j
M

j
,

D3 (s
j
)"D (s

uj
)#

N
+
j/1

sJ
j
D

j
,

K3 (s
j
)"K(s

uj
)#

N
+
j/1

sJ
j
K

j
, (7)

where M(s
uj
), D (s

uj
) and K(s

uj
) are the structural parameter matrices of the initially designed

system. Let u
a
and G3 denote the required control input vector and controller gain matrix of

the new system, respectively; the new structure system, which possesses the same dynamic
response as the initial system, can be written as follows:

x5 "GC
0

!M3 ~1K3
I

!M3 ~1D3 D#C
0

M3 ~1B
0
DG3 Hx ,

y"[0 C
0
]x, x

0
"G

q
0

q5
0
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Since the new system and the initially designed one have the same response, the matrices
of the two closed-loop systems should be equivalent, i.e.,

C
0

!M3 ~1K3
I

!M3 ~1D3 D#C
0

M3 ~1B
0
DG3 "C

0

!M~1K

I

!M~1DD#C
0

M~1B
0
DG , (8)

where M3 , D3 , K3 and G3 are the function matrices of variables sJ
j
( j"1, 2,2, N).

According to the modern control theory [8], if the initially and newly designed systems
are both controllable and observable, the constraint equation can be obtained as follows:

(I!B
0
B`
0

) C
N
+
i/1

M
i
s8
i

N
+
i/1

K
i
s8
i

N
+
i/1

D
i
s8
iDD"0,

D"C
M~1B

0
G

p
!M~1K, M~1B

0
G

r
!M~1D

I 0
0 I D , (9)

where [G
p
, G

r
]"G, and B`

0
is the pseudo-inverse matrix of B

0
.

It has been proved that equation (9) is the su$cient and necessary condition for the
existence of a solution for matrix G3 [9], and the new control gain matrix G3 can be expressed
as

G3 "G#B`
0 C

N
+
i/1

M
i
sJ
i

N
+
i/1

K
i
sJ
i

N
+
i/1

D
i
sJ
iDD. (9@)

Now, our task is to seek sJ
j
in the new system in order to minimize the control input

energy JI , i.e.,

JI
.*/

"

n
+
i/1
P

=

0

uT
a
(i, t)Ru

a
(i, t) dt. (10)

For the controller of the new system, u
a
"G3 x, the objective function JI can be written as

JI "
n
+
i/1
P

=

0

xT (i, t)G3 TRG3 x (i, t) dt

"trAG3 TRG3
n
+
i/1
P

=

0

x(i, t)xT(i, t) dtB
"tr(G3 TRG3 X), (11)

where tr denotes the trace of a matrix and X is the state covariance matrix [9], i.e.,

X"

n
+
i/1
P

=

0

x (i, t)xT(i, t) dt.

The state covariance matrix X can be calculated using the Riccati equation as follows:

AX#XAT#X
0
"0, (11@)

where

A"C
0

!M~1K

I

!M~1DD#C
0

M~1B
0
DG, X

0
"diag [x2

01
, x2

02
,2 , x2

0n
].
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The variation of the cross-sectional areas sJ
j
is expressed as a vector by

s8"MsJ
1
, sJ

2
,2, sJ

N
NT

and the constraint condition equation (9) can be deduced as follows [8]:

Fs8"0. (12)

Similarly, the objective function JI of equation (11) can be transformed into a function of
the unknown vector s8 , i.e.,

JI "s8 TH
2
s8#HT

1
s8#H

0
. (13)

The matrices F, H
0
, H

1
and H

2
in equations (12) and (13) are known matrices, because

they can be obtained from matrices M, D, K, G and X, as well as M
j
, D

j
and K

j
via some

matrix operation.
In order to obtain the concrete expressions of matrices F, H

0
, H

1
and H

2
, two de"nitions

f matrix operation can be adopted as follows.

(1) The de"nition of the Kronecker product of a matrix:
If A is a matrix of n]m dimension, and B is a matrix of arbitrary dimension, the

Kronecker product of A and B is de"ned as

A'B"C
a
11

B a
12

B 2 a
1m

B
a
21

B a
22

B 2 a
2m

B
F F } F

a
n1

B a
n2

B 2 a
nm

B D ,

where a
ij

(i"1, 2,2 , n; j"1, 2,2, m) is the element of matrix A.

(2) The de"nition of the vector function of a matrix:
If A is a matrix of n]m dimension and a

i
(i"1, 2,2, m) is the ith column of A, the

vector function <ec (A) of A is de"ned as

<ec(A)"MaT
1
, aT

2
,2 , aT

m
NT.

Using de"nitions (1) and (2), the matrix F in constraint equation (12) can be written as

F"[PT' (B
0
B`
0
)]U,

where

U"[<ec(W
1
), <ec (W

2
) ,2 , <ec(W

N
)], W

j
"[K

j
D

j
M

j
],

P"C
I 0
0 I

M~1B
0
G

P
!M~1K, M~1B

0
G

r
!M~1D D .

Assume Z"[PT'B`
0

]U, then

H
2
"ZT (X'R)Z, H

1
"2ZT (X'R)<ec(G), H

0
"[<ec (G)]T (X'R) [<ec (G)].

Thus, the optimum design of a new structure is simpli"ed to solve the minimum value
problem of quadratic form as follows:

JI
.*/S

"s8 TH
2
s8#HT

1
s8#H

0
,

s.t. Fs8"0. (14)



OPTIMUM CONTROL FOR INTELLIGENT STRUCTURE 781
Because equation (14) is the extremum problem of generic quadratic form with
constraint condition, it can be solved using common numeric algorithms and existing
programs.

When the variation of sJ
j
( j"1, 2,2, N) is calculated from equation (14), the

cross-sectional areas of the bars of the optimized structure can be expressed by

s
j
"s

uj
#sJ

j
, j"1, 2,2 , N.

Then, the structural parameter matrix M3 , D3 and K3 for the optimized structure can be
worked out using equation (7). The optimum feedback gain matrix G3 for the optimized
system can be obtained using equation (9@).

3. EXAMPLE OF THE INTEGRATED OPTIMIZATION OF AN INTELLIGENT TRUSS

A 72-bar intelligent truss with two piezoelectric actuators (Figure 1) is used for analysis.
The structural vibration can be actively controlled by the piezoelectric actuators located at
bars 55 and 61 through the application of a controllable electric "eld. The feedback input
voltage into the actuators are automatically determined using a computer according to the
measured vibration response of the truss.

The output force of the piezoelectric actuators I and II is 8.50 N/V, their Young's
modulus E

P
"139GPa, and their mass density o

p
"7500 kg/m3. The truss bars are made

of aluminum alloy. Their Young's modulus E"70 GPa and their mass density
o"2700 kg/m3. In the initial structure design, the constrained root-mean square values of
the dynamic response amplitude of the measurement points n

y
are >

j
"0)001 m,

j"1, 2,2 , n
y
. In addition, the upper bound of the cross-sectional area of each bar is

s
uj
"2)0 cm2, and the lower bound is s

dj
"1)0 cm2. The maximum allowable voltage input

to the piezoelectric actuators is <
max

"100 V.
Firstly, we made the design of an optimum controller for the initial structure and

ascertained that the required maximal input voltages are u
1
"65V and u

2
"24)5V for

actuators I and II, respectively. Secondly, the dynamic structural optimization of the initial
Figure 1. An intelligent truss with actuators for vibration control.



TABLE 1

Cross-sectional areas of bars of the initial and optimized truss structures

Number of bars
1}4 5}12 13}16 17}18 19}22 23}30 31}34 35}36 37}40 41}48 49}52 53}54 55}58 59}66 67}70 71}72

Init(ial s
uj

(cm2)
2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0 2)0

Optimized s
j
(cm2)

1)64 1)35 1)55 1)10 1)58 1)25 1)41 1)48 1)27 1)47 1)13 1)00 1)21 1)38 1)31 1)0

TABLE 2

Comparison of optimal controllers and structural weight between the initial and optimized
structures

Initial truss Opt. truss

Struct. total mass 44)6 kg 29)3 kg

Piezoelectric Max. input force (N) 552 430
actuator I Max. exciting voltage (V) 65 50

Mass (kg) 2)2 1)6

Piezoelectric Max. input force (N) 208 166
actuator II Max. exciting voltage (V) 24)5 19)6

Mass (kg) 1)5 1)2
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structure was carried out using the proposed methods and a new structure was designed
and constructed.

The cross-sectional areas of the bars in the initial and optimized structures are shown in
Table 1. For the optimized structure system, its optimum controller was designed again and
the required maximal control input voltages are given in Table 2, where the total weights of
the initial and new structures are also listed for convenience of comparison. Because the
actuating force produced by the piezoelectric actuator is directly proportional to the
cross-sectional area of the actuator, decreasing the required actuating force is equivalent to
reducing the cross-sectional area of the actuator. Table 2 shows that the total structural
weight decreases 34)5% from the initial to the optimum structure, and the required
maximum actuating force produced by the piezoelectric actuators decreases by about 20%.
This indicates the e$ciency of the integrated optimization of the controller and the
structural weight.

Table 3 presents four sets of data: Set I is the natural frequencies of the initial truss system
without structural optimization; Set II is the natural frequencies of the optimized truss
system; Set III is the eigenvalues of the closed-loop system (A#BG) for the initial truss
without structural optimization but with optimal control input gain G; and Set IV is the
eigenvalues of the closed-loop system (A3 #BG3 ) for the optimized truss system with optimal
control input gain G3 . The natural frequencies in Table 3 show that the initial truss has more
repetitive natural frequencies than the optimized truss, the natural frequencies of the



TABLE 3

Some of the natural frequencies and eigenvalues of the closed-loop system for the initial and
optimized trusses

Set I Set II Set III Set IV

Order (Hz) (Hz) Real Image Real Image

1 62)038 63)62 !0)3897 !389)79 !0)3998 !399)80
2 62)038 66)54 !0)3897 389)79 !0)3998 399)80
3 161)53 164)1 !0)3897 !389)79 !0)4175 !417)55
4 250)64 257)4 !0)3897 389)79 !0)4175 417)55
5 254)23 261)5 !1)0149 !1014)9 !1)0310 !1031)0
6 254)23 268)8 !1)0149 1014)9 !1)0310 1031)0
7 460)64 446)2 !1)5748 !1574)8 !1)6174 !1617)4
8 513)05 502)5 !1)5748 1574)8 !1)6174 1617)4
9 513)05 506)8 !1)5973 1597)3 !1)6432 !1643)2

10 657)98 636)1 !1)5973 !1597)3 !1)6432 1643)2
11 657)98 647)5 !1)5973 !1597)3 !1)6887 !1688)7
12 666)86 674)8 !1)5973 1597)3 !1)6887 1688)7
13 692)50 682)3 !2)8943 2894)3 !2)8036 !2803)6
14 704)51 693)1 !2)8943 !2894)3 !2)8036 2803)6
15 704)51 706)7 !3)2236 3223)6 !3)1573 !3157)3
16 707)92 713)5 !3)2236 !3223)6 !3)1573 3157)3
17 707)95 718)1 !3)2236 3223)6 !3)1841 !3184)1
18 802)82 808)0 !3)2236 !3223)6 !3)1841 3184)1
19 814)72 810)2 !4)1342 4134)2 !3)9966 !3996)5
20 814)72 816)2 !4)1342 !4134)2 !3)9966 3996)5
21 829)12 820)3 !4)1342 !4134)2 !4)0685 !4068)5
22 868)19 859)6 !4)1342 4134)2 !4)0685 4068)5
23 927)79 943)2 !4)1900 4190)0 !4)2399 !4239)9
24 927)79 949)6 !4)1900 !4190)0 !4)2399 4239)9
25 950)99 957)3 !4)3511 4351)1 !4)2871 !4287)0
26 1000)1 1002 !4)3511 !4351)1 !4)2871 4287)0
27 1014)8 1038 !4)4266 4426)6 !4)3552 !4355)2
28 1058)6 1056 !4)4266 !4426)6 !4)3552 4355)2
29 1058)6 1061 !4)4266 !4426)6 !4)4401 !4440)1
30 1059)7 1070 !4)4266 4426)6 !4)4401 4440)1
31 1076)4 1091 !4)4480 !4448)0 !4)4830 !4483)0
32 1108)1 1111 !4)4480 4448)0 !4)4830 4483)0
33 1137)4 1134 !4)4482 !4448)2 !4)5123 !4512)3
34 1177)4 1186 !4)4482 4448)2 !4)5123 4512)3
35 1177)4 1190 !5)0443 5044)3 !5)0769 !5076)9
36 1179)1 1200 !5)0443 !5044)3 !5)0769 5076)9
37 1200)4 1203 !5)1190 !5119)0 !5)0907 !5090)7
38 1200)4 1205 !5)1190 5119)0 !5)0907 5090)7
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optimized system are not always higher than those of the same order of the initial system,
and the variation of closed-loop eigenvalues of the initial and optimized systems possesses
the same tendency. Although the cross-sectional areas of the bars in the optimized truss
decrease, the sti!ness distribution of the optimized truss is more reasonable, so that the
optimized truss can still keep the same vibration response as that of the initial truss when it
undergoes the same excitation. Moreover, the optimized system has less weight and
consumes less energy of control input than the initial truss.
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4. CONCLUSIONS

The results of numerical simulation for the integrated optimization of an intelligent truss
show that the hybrid optimization algorithm proposed by the authors results in
a considerable reduction of the weight of the optimized structure. As a result, the weight of
the control actuators and the relevant instruments, as well as the required input control
forces, will be reduced signi"cantly. Obviously, this approach possesses important
application merit in developing an intelligent structure technique for active vibration
control. Therefore, it is worthy of further investigation.
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